Nikon (r)

Nikon Instruments Inc. | Americas

Skip to main content

Super-Resolution Microscope System

Request a Quote

Achieving resolution 10 times greater than a conventional optical microscope enables molecular level understanding.

STochastic Optical Reconstruction Microscopy (STORM) reconstructs a super-resolution image by combining precise localization information for individual fluorophores in complex fluorescent microscope specimens, enabling the visualization and quantification of molecular interactions at the nanoscopic level. N-STORM 5.0 takes advantage of Nikon's ultra-stable, high-performance Ti2-E inverted microscope and applies high-accuracy, multi-color localization and reconstruction in three dimensions (xyz) to enable super-resolution imaging at tenfold the resolution of conventional optical microscopes (up to approximately 20 nm in xy).  Tools in NIS-Elements enables unprecedented flexibility in STORM acquisition workflow, expanding application capabilities.

Key Features

Tenfold Improvement of Lateral Resolution up to 20nm

N-STORM utilizes high accuracy localization information for thousands of individual fluorophores present in a field of view to create breathtaking "super-resolution" images, exhibiting spatial resolution that is 10 times greater than conventional optical microscopes.

Unknown-1
Unknown-2

Human cervical cancer cells (HeLa S3) labeled with Alexa Fluor® 647 (NUP153) and ATTO 488 (TPR) 
Photos courtesy of: Dr. Michael W. Davidson, National High Magnetic Field Laboratory, Florida State University


Tenfold Improvement of Axial Resolution up to 50nm

In addition to lateral super-resolution, N-STORM utilizes proprietary methods to achieve a tenfold enhancement in axial resolution over conventional optical microscopes, and effectively provide 3D information at the nanoscale.

3D-Stack function allows multiple 3D STORM images in different Z positions to be captured and merged into one image to create thicker STORM image.

3D volume rendering image

Unknown

Projection image

3D-Stack STORM image of tubulin of BSC-1 cell labeled with Alexa Fluor® 647 with image depth of 4µm.


Dynamic Super Resolution Imaging at the Nanoscale Level

Image acquisition speed has been significantly improved, increasing from minutes to seconds* for a single shot, due to newly developed optics and illumination systems optimized for the sCMOS camera, which is capable of approximately 10 times faster image acquisition than before. Thanks to this improvement, it is now possible to acquire dynamics of living specimens at a resolution 10 times greater than that of conventional optical microscopes.

*Using high-speed mode (20µm x 20µm imaging area)

Imaging speed: 350 fps 
30 min time-lapse imaging with 1 min interval


Multi-Color Imaging Capability

Multi-color super-resolution imaging can be carried out using both activator-reporter pairs for sequential activation imaging and activator-free labels for continuous activation imaging. This flexibility allows users to easily gain critical insights into the localization and interaction properties of multiple proteins at the molecular level.

pic_05
pic_06

Dual color STORM image of microtubule (Alexa Fluor® 405-Alexa Fluor® 647) and mitochondria (Cy3-Alexa Fluor® 647) in a mammalian cell. 
Objective: CFI Plan Apochromat VC 100X Oil (NA 1.40)


High Definition, High Density Images

The newly developed illumination magnifying lens, improved laser excitation efficiency, and increased image acquisition rate successfully enhance the density of molecules per unit area and provide much clearer images with high molecule counts.

pic_18
pic_19

Left: Improved image quality, Right: Before improvement 
Scale bar: 5µm 
Super-resolution image quality is significantly improved in the same imaging time. 
Sample: Tubulin of BSC-1 cell labeled with Alexa Fluor® 647, acquisition time: 20 seconds


N-STORM with DNA-PAINT

DNA-PAINT labeling of samples for STORM-type single molecule localization imaging provides a unique solution virtually eliminating the effects of photobleaching – single molecules can be imaged for several days or more in the same sample, without exchanging the imaging buffer, and without significant drop-off in the number of molecules localized or their photon output.  This technique is thus ideal for extended multi-color and 3D super-resolution imaging at very high sampling rates (note that DNA-PAINT is not compatible with live samples).


Large Image Acquisition Area

Intermediate zoom lenses in the imaging system have been newly developed and optimized for a wide field of view.

The wide-view mode is achieved at 80 µm x 80 µm, which is an imaging area 4 times wider than before.

pic_20

Left: 4 times wider imaging area, 80 µm x 80 µm (wide-view mode) 
Right: Imaging area of conventional model, 40 µm x 40 µm 
Sample: Mitochondria TOM20 conjugated with Alexa Fluor® 647


Correlative Super-Resolution Imaging

N-STORM can be simultaneously configured with a confocal microscope system such as the A1+, and can easily switch between confocal imaging and super resolution imaging. A desired location in a sample can be selected from a low-magnification/large FOV confocal image and captured in ultra-high resolution by simply switching the imaging method.

Ti2-N-STORM-A1R

Objectives Designed for N-STORM

Silicone immersion objective

Silicone immersion objective uses high viscosity silicone oil for immersion liquid, which has a refractive index that closely matches with those of the live cells. It allows capturing high-resolution, multi-color 3D images up to the apical side of a cell during long-term, time-lapse imaging. Superior chromatic aberration correction and high transmittance are ensured through broad wavelength range.

HP-Plan-Apo-Lambda

CFI SR HP Plan Apochromat Lambda S 100XC Sil

pic_28

Acquired using the CFI SR HP Plan Apochromat Lambda S 100XC Sil (approx. 6.5 μm depth)

pic_29

Acquired using the CFI SR HP Apochromat TIRF 100XC Oil (approx. 6.5 μm depth)

SR HP series objectives

The SR HP series of objectives are compatible with the ultra-high powered lasers required for inducing rapid photoswitching of fluorophores. They provide improved axial chromatic aberration correction to achieve the highest level of precision in localization and image alignment for 3D multi-color STORM imaging.

SR-HP-Apo-TIRF

CFI SR HP Apochromat TIRF 100XC Oil

HP-Plan-Apo-VC

CFI HP Plan Apochromat VC 100X Oil



Back to top